Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We measure the projected two-point correlation functions of emission-line galaxies (ELGs) from the Dark Energy Spectroscopic Instrument One-Percent Survey and model their dependence on stellar mass and [OII] luminosity. We select ∼180,000 ELGs with redshifts of 0.8 < z < 1.6, and define 27 samples according to cuts in redshift and both galaxy properties. Following a framework that describes the conditional [OII] luminosity–stellar mass distribution as a function of halo mass, we simultaneously model the clustering measurements of all samples at fixed redshift. Based on the modeling result, most ELGs in our samples are classified as central galaxies, residing in halos of a narrow mass range with a typical median of ∼1012.2−12.4h−1M⊙. We observe a weak dependence of clustering amplitude on stellar mass, which is reflected in the model constraints and is likely a consequence of the 0.5 dex measurement uncertainty in the stellar mass estimates. The model shows a trend between galaxy bias and [OII] luminosity at high redshift (1.2 < z < 1.6) that is otherwise absent at lower redshifts.more » « less
-
ABSTRACT This paper provides a comprehensive overview of how fitting of baryon acoustic oscillations (BAO) is carried out within the upcoming Dark Energy Spectroscopic Instrument’s (DESI) 2024 results using its DR1 data set, and the associated systematic error budget from theory and modelling of the BAO. We derive new results showing how non-linearities in the clustering of galaxies can cause potential biases in measurements of the isotropic ($$\alpha _{\mathrm{iso}}$$) and anisotropic ($$\alpha _{\mathrm{ap}}$$) BAO distance scales, and how these can be effectively removed with an appropriate choice of reconstruction algorithm. We then demonstrate how theory leads to a clear choice for how to model the BAO and develop, implement, and validate a new model for the remaining smooth-broad-band (i.e. without BAO) component of the galaxy clustering. Finally, we explore the impact of all remaining modelling choices on the BAO constraints from DESI using a suite of high-precision simulations, arriving at a set of best practices for DESI BAO fits, and an associated theory and modelling systematic error. Overall, our results demonstrate the remarkable robustness of the BAO to all our modelling choices and motivate a combined theory and modelling systematic error contribution to the post-reconstruction DESI BAO measurements of no more than 0.1 per cent (0.2 per cent) for its isotropic (anisotropic) distance measurements. We expect the theory and best practices laid out to here to be applicable to other BAO experiments in the era of DESI and beyond.more » « less
-
Abstract Progress in gravitational-wave (GW) astronomy depends upon having sensitive detectors with good data quality. Since the end of the Laser Interferometer Gravitational-Wave Observatory-Virgo-KAGRA third Observing run in March 2020, detector-characterization efforts have lead to increased sensitivity of the detectors, swifter validation of GW candidates and improved tools used for data-quality products. In this article, we discuss these efforts in detail and their impact on our ability to detect and study GWs. These include the multiple instrumental investigations that led to reduction in transient noise, along with the work to improve software tools used to examine the detectors data-quality. We end with a brief discussion on the role and requirements of detector characterization as the sensitivity of our detectors further improves in the future Observing runs.more » « less
-
Abstract The Gravitational-Wave Transient Catalog (GWTC) is a collection of short-duration (transient) gravitational-wave signals identified by the LIGO–Virgo–KAGRA Collaboration in gravitational-wave data produced by the eponymous detectors. The catalog provides information about the identified candidates, such as the arrival time and amplitude of the signal and properties of the signal’s source as inferred from the observational data. GWTC is the data release of this dataset, and version 4.0 extends the catalog to include observations made during the first part of the fourth LIGO–Virgo–KAGRA observing run up until 2024 January 31. This Letter marks an introduction to a collection of articles related to this version of the catalog, GWTC-4.0. The collection of articles accompanying the catalog provides documentation of the methods used to analyze the data, summaries of the catalog of events, observational measurements drawn from the population, and detailed discussions of selected candidates.more » « less
-
The Heisenberg uncertainty principle dictates that the position and momentum of an object cannot be simultaneously measured with arbitrary precision, giving rise to an apparent limitation known as the standard quantum limit (SQL). Gravitational-wave detectors use photons to continuously measure the positions of freely falling mirrors and so are affected by the SQL. We investigated the performance of the Laser Interferometer Gravitational-Wave Observatory (LIGO) after the experimental realization of frequency-dependent squeezing designed to surpass the SQL. For the LIGO Livingston detector, we found that the upgrade reduces quantum noise below the SQL by a maximum of three decibels between 35 and 75 hertz while achieving a broadband sensitivity improvement, increasing the overall detector sensitivity during astrophysical observations.more » « less
-
Abstract We report the observation of gravitational waves from two binary black hole coalescences during the fourth observing run of the LIGO–Virgo–KAGRA detector network, GW241011 and GW241110. The sources of these two signals are characterized by rapid and precisely measured primary spins, nonnegligible spin–orbit misalignment, and unequal mass ratios between their constituent black holes. These properties are characteristic of binaries in which the more massive object was itself formed from a previous binary black hole merger and suggest that the sources of GW241011 and GW241110 may have formed in dense stellar environments in which repeated mergers can take place. As the third-loudest gravitational-wave event published to date, with a median network signal-to-noise ratio of 36.0, GW241011 furthermore yields stringent constraints on the Kerr nature of black holes, the multipolar structure of gravitational-wave generation, and the existence of ultralight bosons within the mass range 10−13–10−12eV.more » « less
An official website of the United States government
